CS412 MACHINE LEARNING 2020/2021 SUMMER		
Instructor	Merve Can KUŞ mervecan.kus@sabanciuniv.edu	
TAs	Özgür Can Seçkin seckinozgurcan@sabanciuniv.edu	
	Emre Batuhan Baloğlu emre.baloglu@sabanciuniv.edu	
Course E-mail	cs412@sabanciuniv.edu	
Lectures @Zoom	Mondays 08:40-11:30 Tuesdays 08:40-10:30 Wednesdays 08:40-10:30	
Recitation @Zoom	Tuesdays 10:40-13:30	
Course Description	This is an introductory machine learning course that aims a solid understanding of the fundamental issues in machine learning (overfitting, bias/variance), together with several state-of-art approaches such as decision trees, linear regression, k-nearest neighbor, Bayesian classifiers, neural networks, logistic regression, and classifier combination.	
Learning Objectives	 Understand the basic concepts, issues, assumptions and limitations in machine learning (e.g. overfitting, error measures, curse of dimensionality, etc.). Have a working knowledge of the basic mathematics (probability, expectation, entropy, basic linear algebra, etc.) and algorithms behind common machine learning techniques; together with their suitability in given situations. Given a machine learning problem, be able to implement and evaluate one of the standard machine learning algorithms (e.g. decision trees, neural networks, SVMs) using Python. 	
Learning Outcomes	 Have a solid understanding of the basic concepts, issues, assumptions and limitations in machine learning and how they apply to various machine learning techniques. Have a working knowledge of the basic mathematics (probability, expectation, entropy, basic linear algebra, etc.) and algorithms behind common machine learning techniques; together with their suitability in given situations. Given a machine learning problem, select, implement and evaluate one of the appropriate machine learning algorithms (e.g. decision trees, neural networks, SVMs) using Python. 	

COURSE CONTENT (Planned, Subject to Change)		
Week	Dates	Topics
1	05-06-07.07.2021	Course Logistics Introduction to Machine Learning Machine Learning Concepts Decision Trees
2	12-13-14.07.2021	Decision Trees Nearest Neighbor Classifier Linear Regression
3	26-27-28.07.2021	Probability Review & MLE and MAP Bayes Classifier
4	02-03-04.08.2021	Logistic Regression Bias Variance Tradeoff Neural Networks - Introduction Neural Networks - Learning
5	09-10-11.08.2021	Neural Networks - CNN Performance Metrics
6	16-17-18.08.2021	Classifier Combination (Ensemble Methods) Support Vector Machines (SVMs)
GRADING		
Item	Weight	Description
Final Exam	35%	Online proctored exam. Exam rules will be declared.
Quizzes	30%	Five online proctored quizzes (each ~20 minutes). Rules will be declared.
Homeworks	20%	Four written or programming homeworks. Must be completed individually. Copying the work of others or from other sources is not permitted.
Group Project	10%	Hands on practical experience with groups of two to four people. Copying the work of others or from other sources is not permitted.
Attendance	5%	Based on Zoom attendance. You must attend the synchronous Zoom lectures with your SU account.
Total	100%	Overall total grade must be ≥ 35 (over 100) AND final exam grade must be ≥ 30 (over 100) to pass the course.